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NOTATION

Dimensions
Symbol Description Dimensions in

Mass -Length-Time
d Propeller Diameter L
n Propeller rate of revolution T- 1

R Propeller tip radius L
R0 Radius of slip stream in

plane of wake measurement L
r Local radius L
T Propeller thrust MLT.2
V Axial velocity of propeller or

pitot tube through the water LT"
at radius fraction z
Ship speed LT"1

v Axial velocity change at
radius fraction a

P Mass density ML- 3

Coefficients and Ratios
Symbol Formula Description

s 2 Propeller thrust-load. p R 2V+2  
coefficient

S Propeller advance
nd coefficient
V• Propeller apparent

nd advance coefficient
TKT Propeller thrustp n 2d4 coefficient

W1 Taylor wake fraction atIV radius fraction x

p r
X or Radius fraction
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ABSTRACT

The radial distribution of propeller thrust-load coefficient is calculated
from experimental wake data obtained from towed and self-propulsion tests on a
submerged body of revolution. The experimentally obtained thrust distribution

is in excellent agreement with a theoretically calculated distribution. Numer-
ical integration yields a total thrust-load coefficient which is in good agreement
with propulsion test results.

INTRODUCTION

Past efforts to determine the radial distribution of propeller thrust have been mostly

by theoretical means. Information is especially needed for a propeller operatilig behind a
submerged body rather than for the open-water propeller condition.

In this report, a radial distribution of propeller thrust obtained theoretically is com-
pared with one obtained experimentally. The experimentally determined radial wake distri-
butions were obtained from tests on a submerged body of revolution. The radial distribution
of propeller thrust, or more conveniently the propeller thrust-load coefficient, CTS is easily
obtained from such wake data. The results are presented as curves of wake fraction and thrust
coefficients. The calculated total thrust-load coefficient is compared to the thrust-load
coefficient obtained from propulsion tests.

EXPERIMENTAL WAKE DISTRIBUTIONS

The wake curves of Figure 1 were obtained from measurements made a short distance
(0.227 d) abaft the propeller rotational plane on both a towed and self-propelled model. The
wake survey was made on both the port and starboard sides of the model by means of pitot
rakes. The method of mounting the wake survey rakes in the upper quadrants and the general
arrangement of the part and starboard wake survey assemblies on the model are shown in
Figure 2. The axes of the pitot static tubes of the rakes were set parallel to the average
slope (tan 14 dog) of the afterboiy and lie in a 45-deg meridian plane. For the purpose of
computing thrust, a cosine correction was applied to Ohe measured velocities. The effect
of slip stream rotation on the experimentally derived thrust distribution as obtained by the
pitot survey was mathematically investigated. For this case, the correction as calculated
by the method of Pankhurst 1 was found to be negligibly small.

1Refeencoes are listed on page 8.
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Figure 1 - Radial Distribution of Wake Fraction With and Without a Propeller
as Determined from Tests on a Submerged Body of Revolution

RADIAL THRUST DISTRIBUTIONS

The axial momentum equation functionally relates the wake fraction curves from towed

and self-propulsion tests (Figure 1) to the incremental thrust as follows:

dT = 2 #rp (v +~ Ai- A t'rdr

where A v represents the velocity change between the towed (without propeller) and the pro.

pelled condition. A t and v are expressed nondimensionally (Figure 3) as A v/vt, and (1 - W'),

respectively. The curves shown in Figure 3 were derived from the curves of Figure 1 by

applying the appropriate cosine corrections (mentioned previously) and by correcting for the

contraction of the propeller slip stream. In computing x for the propelled condition, ft'was

estimated to be equal to 0.968 R based on data derived by Theodorsen. 2

Equation [1] can also be conveniently written in nondimensional terms. Let 0 - /Rl

and divide by (%4p t, 2 rr R 2) then the thrust distribution is given by

do )"2 2 v



Figure 29 - Plan View

Figure 2b - Elevation

Figure 2 - View of Wake Survey Rakes
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The experimental thrust distribution dOTs/da obtained from Equation [2) and a theoretically

obtained distribution are plotted in Figure 4. The agreement between the experimental curve

and the theoretical curve is excellent. Recent developments in the circulation theory 3.4.5

and the manner in which the experimental distribution was obtained, both make necessary an

explanation of the curves shown in Figure 4. The shape of the distributions towards the pro-
peller hub and propeller tip is of particular interest. At the propeller tip, the experimental

curve exhibits a finite value of dCr/sdx (solid line) which fairs into real experimental distri-

bution at v. 0.9. Why the diameter of the slipstream is larger than the propeller diameter is

not completely understood. A number of factors such as flow separation on the appendages;
interaction between the hull, appendages, and propeller; or the appendage arrangement itself

could be contributing factors. This virtual Atv does not, however, produce any additional pro-
peller thrust due to the lack of a point of application beyond the propeller disk. Equation (2]
does not consider this fact; therefore, the real experimental distribution is faired to zero at

x - 1.0. In contrast to the experimental curve just discussed, the theoretical thrust distribu-

tion falls to zero at both the propeller hub and propeller tip. The accuracy of theoretical thrust
distributions was greatly increased by Tachmindji's formulation and solution of the potential

problem for the circulation distribution of a propeller with a finite hub. 3 Prior to the publi-

cation of the data contained in References 4 and 5, theoretical thrust distributions were less

accurate near the extremities. The circulation distribution as calculated assuming zero hub

diameter would yield a finite value for dCTS/do at the propeller hub. This is caused by the
extention of the vortex sheets to the propeller axis.

TOTAL THRUST

Using Simpson's rule, the total thrust-load coefficient was calculated from the experi-

mental distribution shown in Figure 4. A CTS value of 0.595 results from the integration

The total thrust obtained from a model self-propulsion test is estimated from Figure 5. The
characteristic curves for Propeller 3278 are entered on the abscissa at a J of 0.605 as deter-

mined from a model self-propulsion test. The corresponding Kt/J 2 value is found, by inter-
polation, to be 0.545. By calculation KT/Ja 2 - 0.545 (1 - W)2 is found to be equal to 0.2163.

Therefore, the value of CTs obtained from the propulsion test is 8/w. :0.2163 = 0.551. The
agreement between the CTS values obtained by the two methods is very good.

CONCLUSIONS

1. For the hull-propeller combination considered, the experimental and theoretical thrust
distributions are in excellent agreement.

2. An integration of the experimental thrust distribution yields a total thrust which is in

good agreement with the results obtained from submerged model propulsion tests.
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